Communications to the Editor

Synthesis and Structure of the Polyhedral $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}$ Borane Anion Containing Both Oxygen- and Hydrogen-Bridge Bonds

Fangbiao Li, Kenneth Shelly, Robert R. Kane, Carolyn B. Knobler, and M. Frederick Hawthorne*

Department of Chemistry and Biochemistry University of California at Los Angeles Los Angeles, California 90095-1569

Received April 26, 1996
The syntheses of derivatives of the polyhedral borane anion $\left[n-\mathrm{B}_{20} \mathrm{H}_{18}\right]^{2-}(\mathbf{1})$ have been the subject of considerable research because of their potential application in the boron neutron capture therapy (BNCT) of cancer. ${ }^{1}$ The synthesis of the hydroxyl-substituted anion $\left[a e-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{4-}$ and its isomer $\left[a^{2}-\right.$ $\left.\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{4-}$ have been reported, ${ }^{2}$ and their oxidation by aqueous ferric ion has been shown to produce $\left[n-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}$ (5). ${ }^{2}$ Reinvestigation of this chemistry has led to the discovery of a new isomer of $\left[\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}$: an unprecedented oxygen-, hydrogen-bridged polyhedral borane anion, $\left[1,1^{\prime}-(\mu-\mathrm{H})-2,2^{\prime}-(\mu-\right.$ $\left.\left.\mathrm{OH})-1-\left(1^{\prime}-\mathrm{B}_{10} \mathrm{H}_{8}\right) \mathrm{B}_{10} \mathrm{H}_{8}\right)\right]^{2-}$, designated as $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}(4)$. Oxygen-substituted derivatives of $\mathbf{4}$ are readily accessible by simple alkylation reactions, giving this boron-rich anion the potential to conjugate to a variety of organic substrates. We report here the synthesis, structure, and reactions of the oxygen and hydrogen doubly bridged polyhedral borane anion $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17^{-}}\right.$ $\mathrm{OH}]^{2-}$.

The addition of $\left[\mathrm{Et}_{3} \mathrm{NH}\right]_{2}\left[n-\mathrm{B}_{20} \mathrm{H}_{18}\right]^{3}$ to a stirred suspension of NaOEt (prepared in situ from NaH and EtOH) in dry diethyl ether afforded $\mathrm{Na}_{4}\left[1-\left(2^{\prime}-\mathrm{B}_{10} \mathrm{H}_{9}\right)-2-\left(\mathrm{OC}_{2} \mathrm{H}_{5}\right) \mathrm{B}_{10} \mathrm{H}_{8}\right]$ (designated $\left.\mathrm{Na}_{4}\left[a e-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right], \mathrm{Na}_{4}[2]\right)^{4}$ in high yield (Scheme 1A). The room temperature ferric ion oxidation of 2 in anhydrous ethanol produced $\left.\left[1,1^{\prime}-(\mu-\mathrm{H})-2,2^{\prime}-\left(\mu-\mathrm{OC}_{2} \mathrm{H}_{5}\right)-1-\left(1^{\prime}-\mathrm{B}_{10} \mathrm{H}_{8}\right) \mathrm{B}_{10} \mathrm{H}_{8}\right)\right]^{2-}(\mathbf{3}$, $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right]^{2-}$), isolated in 64% yield as its tetramethylammonium salt. ${ }^{5}$ The structural identity of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}[\mathbf{3}]$ has been confirmed by X-ray crystallographic analysis. ${ }^{6}$

The hydrolysis of $\mathbf{3}$ to $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}(\mathbf{4})^{7}$ was accomplished in 75% isolated yield by heating a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17}{ }^{-}\right.$

[^0]
$\mathrm{OC}_{2} \mathrm{H}_{5}$] in $\mathrm{H}_{2} \mathrm{O}$ at the boiling point for 24 h (Scheme 1B). In order to ascertain the fate of the ethyl group of $\mathbf{3}$, this reaction was also performed with $\mathrm{D}_{2} \mathrm{O}$ as the solvent. Examination of the product mixture by ${ }^{1} \mathrm{H}$ NMR indicated the presence of EtOD although some ethylene could also have been formed.

The $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}$ anion was also obtained from the rearrangement of its known isomer $\left[n-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right]^{2-}(5) .{ }^{2}$ Heating a solution of $\left[\mathrm{Me}_{4} \mathrm{~N}_{2}[5]\right.$ in 1 N HCl for 14 d resulted in a solution whose ${ }^{11} \mathrm{~B}$ NMR indicated almost complete conversion of $\mathbf{5}$ to $\mathbf{4}$. After recrystallization, the isolation of $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}[4]$ was accomplished in 43% yield. When pure 4 was subjected to the same conditions, $\mathbf{5}$ was not observed, demonstrating that the rearrangement is irreversible

The anion 4 has been characterized by ${ }^{11} \mathrm{~B}$ NMR spectroscopy, electrospray ionization mass spectroscopy (ESI-MS), and X-ray crystallography. An ORTEP drawing ${ }^{8}$ of the structure of the $\mathbf{4}$ anion is shown in Figure 1. This polyhedral borane anion consists of two $\left[\mathrm{B}_{10} \mathrm{H}_{10}\right]^{2-}$ fragments bridged by both oxygen and hydrogen atoms. As a consequence of the bridging atoms between the two borane cages, a six-membered $\mathrm{B}-\mathrm{H}-$ $B-B-O-B$ ring is formed. The bond distances within the two B_{10} cages are normal and similar to those found in other $\left[\mathrm{B}_{10} \mathrm{H}_{10}\right]^{2-}$ structures. The hydrogen atom of the -OH group lies essentially in the plane of the six-membered ring, and there is a hydrogen bond within the crystal between this hydrogen atom and a solvent water molecule. The three-coordinate oxygen atom of $\mathbf{4}$ exhibits essentially planar geometry. The sum of the three angles about oxygen is 353.7°. This geometry has been observed previously in species with tricoordinate oxygen bound to boranes and carboranes. ${ }^{9}$

A hydrogen atom bridges the two apical boron atoms of the two borane cages. A similar bridging hydrogen was recently

[^1]

Figure 1. ORTEP representation of the $\mathbf{4}$ anion showing the atom numbering scheme. For purposes of clarity, the terminal $B-H$ hydrogens have been omitted. Some selected interatomic distances (\AA) and angles (deg) are as follows (estimated standard deviations in parentheses): $\mathrm{O} 1-\mathrm{B} 2=1.474(7), \mathrm{O} 1-\mathrm{B}^{\prime}=1.491(7), \mathrm{B} 1-\mathrm{B} 2=$ $1.673(9), \mathrm{B}^{\prime}-\mathrm{B} 2^{\prime}=1.662(9), \mathrm{B} 1-\mathrm{B} 1^{\prime}=1.907(9), \mathrm{B} 1-\mathrm{H} 1=1.25-$ (6), $\mathrm{B}^{\prime}-\mathrm{H} 1=1.17(6), \mathrm{O} 1-\mathrm{H}(1 \mathrm{OH})=0.908, \mathrm{H}(1 \mathrm{OH})-\mathrm{O}(1 \mathrm{~W})=$ $1.809 ; \mathrm{B} 2-\mathrm{O} 1-\mathrm{B}^{\prime}=114.4(7), \mathrm{O} 1-\mathrm{B} 2-\mathrm{B} 1=113.2(8), \mathrm{B} 2-\mathrm{B} 1-$ $\mathrm{B} 1^{\prime}=99.0(7), \mathrm{B} 1-\mathrm{B} 1^{\prime}-\mathrm{B} 2^{\prime}=101.2(7), \mathrm{B} 1^{\prime}-\mathrm{B} 2^{\prime}-\mathrm{O} 1=111.6(8)$, $\mathrm{B} 1-\mathrm{H} 1-\mathrm{B} 1^{\prime}=104(8), \mathrm{B} 2^{\prime}-\mathrm{O} 1-\mathrm{H}(1 \mathrm{OH})=109.1(11), \mathrm{B} 2-\mathrm{O} 1-$ $\mathrm{H}(1 \mathrm{OH})=130.2(11)$.
structurally identified in $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{19}\right]^{3-} .{ }^{10}$ The apical intercage $B(1)-B\left(1^{\prime}\right)$ separation in $\mathbf{4}$ is $1.907(9) \AA$. This is much longer than the intercage $\mathrm{B}-\mathrm{B}$ bond in $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{18}\right]^{4-}(1.699(4) \AA),{ }^{11}$ but it is comparable to the analogous boron-boron distance in the hydrogen-bridged structure of $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{19}\right]^{3-}(1.936(6) \AA) .{ }^{10}$ In contrast to the structures determined for $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{19}\right]^{3-}$ and $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{18}\right]^{4-}$, the $\mathrm{B}(10)-\mathrm{B}(1)-\mathrm{B}\left(1^{\prime}\right)-\mathrm{B}\left(10^{\prime}\right)$ array of 4 is nonlinear because of geometrical constraints imposed by the bridging oxygen atom. To our knowledge, 4 is the first polyhedral borane to be simultaneously bridged by both an oxygen and a hydrogen atom which has been crystallographically characterized.

Both the hydroxyl and the bridging hydrogens of $\mathbf{4}$ are acidic (Scheme 1C). Dissolution of the anion 4 in water produces an

[^2]acidic solution $(\mathrm{pH} \approx 2)$ due to the ionization of the hydroxyl proton and the formation of $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{O}\right]^{3-} .{ }^{12}$ The aqueous titration of this acidic solution produces no observable changes in the ${ }^{11} \mathrm{~B}$ NMR spectrum of the anion. The K_{a} of the hydroxyl proton is estimated to be $10^{-3} .{ }^{13}$

The deprotonation of the hydrogen bridge of $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{O}\right]^{3-}$ occurs only in strongly basic solution (Scheme 1C). The removal of this proton results in the formation of $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{16} \mathrm{O}\right]^{4-}$, which can easily be distinguished from $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{O}\right]^{3-}$ in the ${ }^{11} \mathrm{~B}$ NMR spectrum. ${ }^{14}$ The estimated $\mathrm{p} K_{\mathrm{a}}$ of this hydrogen bridge is approximately $13,{ }^{13}$ and therefore it is much less acidic than the hydrogen bridge in $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{19}\right]^{3-}\left(\mathrm{p} K_{\mathrm{a}}=7.3\right) .{ }^{15}$ This remarkable difference in acidity is likely the result of the structures and relative stabilities of the conjugate bases of these two acids. The conjugate base $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{18}\right]^{4-}$, formed by the deprotonation of $\left[a^{2}-\mathrm{B}_{20} \mathrm{H}_{19}\right]^{3-}$, has a stable, strain-free structure, ${ }^{11}$ in which the exo-polyhedral boron orbitals that form the $\mathrm{B}-\mathrm{B}$ bond are directed toward one another along the $\mathrm{B}-\mathrm{B}$ vector. In the corresponding $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{16} \mathrm{O}\right]^{4-}$ ion, overlap of the exo-polyhedral orbitals of the apical boron atoms provides a bent $\mathrm{B}-\mathrm{B}$ bond of diminished stability due to the geometric constraints imposed by the bridging oxygen atom. Thus, the deprotonation of $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{O}\right]^{3-}$ results in a five-membered ring whose internal strain is no longer relieved by the presence of the hydrogen bridging the two apical boron atoms.

A demonstration of the facile alkylation of $\mathbf{4}$ is provided by heating the $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{O}\right]^{3-}$ ion with ethyl iodide in MeCN to produce $\mathbf{3}$ in 88% yield (Scheme 1B). The efficacious alkylation reaction of this oxygen-bridged polyhedral borane anion provides a route to oxygen-substituted species. The derivatization of $\mathbf{4}$ with organic substrates will lead to a variety of derivatives having potential utility in BNCT. We are continuing the exploration of this novel chemistry.

Acknowledgment. The authors thank the Department of Energy (Grant No. DE-FG02-95ER61975) for their support of this research.

Supporting Information Available: Experimental procedures, details of the crystallographic data collection, and tables giving positional and thermal parameters, bond lengths, bond angles, and torsion angles for $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}[4]$ (17 pages). See any current masthead page for ordering and Internet access instructions.

JA961385H

[^3]
[^0]: (1) (a) Shelly, K.; Feakes, D. A.; Hawthorne, M. F.; Schmidt, P. G.; Krisch, T. A.; Bauer, W. F. Proc. Natl. Acad. Sci. U.S.A. 1992, 89, 90399043. (b) Feakes, D. A.; Shelly, K.; Knobler, C. B.; Hawthorne, M. F. Proc. Natl. Acad. Sci. U.S.A. 1994, 91, 3029-3033.
 (2) Hawthorne, M. F.; Pilling, R. L.; Garrett, P. M. J. Am. Chem. Soc 1965, 87, 4740.
 (3) (a) Lipscomb, W. N. Proc. Natl. Acad. Sci. U.S.A. 1961, 47, 1791. (b) Pilling, R. L.; Hawthorne, M. F.; Pier, E. A. J. Am. Chem. Soc. 1964 86, 3568.
 (4) Spectroscopic data for 2. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, $\left.\mathrm{H}_{2} \mathrm{O}\right): 9.8$ (1B, apical $\mathrm{B}-\mathrm{B}) ; 3.6(1 \mathrm{~B}$, apical $\mathrm{B}-\mathrm{H}) ;-1.5(1 \mathrm{~B}$, apical $\mathrm{B}-\mathrm{H}) ;-3.3(1 \mathrm{~B}, \mathrm{~B}-\mathrm{O})$; -9.3 (1B, apical); $-23.4,-26.1,-28.9$, and -34.5 (total 15B, equatorial $\mathrm{B}-\mathrm{H}) .{ }^{1} \mathrm{H}$ NMR (ppm, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): 3.52\left(\mathrm{q}, J_{\mathrm{HH}}=7 \mathrm{~Hz}, \mathrm{~B}-\mathrm{O}-\mathrm{CH}_{2}\right) ; 0.90$ $\left(\mathrm{t}, J_{\mathrm{HH}}=7 \mathrm{~Hz},-\mathrm{CH}_{3}\right) .{ }^{13} \mathrm{C}$ NMR (ppm, $\left.\mathrm{D}_{2} \mathrm{O}\right): 78.26\left(\mathrm{~B}-\mathrm{O}-\mathrm{CH}_{2}\right), 13.15$ $\left(-\mathrm{CH}_{3}\right)$.
 (5) Spectroscopic data for 3. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, $\mathrm{H}_{2} \mathrm{O}$): 13.9 (2B B-B); $6.6(2 \mathrm{~B}$, apical $\mathrm{B}-\mathrm{H}) ;-8.9(2 \mathrm{~B}, \mathrm{~B}-\mathrm{O}-\mathrm{B}) ;-19.8,-20.5,-26.6$, and -29.3 (total 14B, equatorial $\mathrm{B}-\mathrm{H}$). Electrospray MS $(\mathrm{m} / \mathrm{z}): 138.6$ $\left\{\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right\}^{2-} ; 2279.0 \quad\left\{(\mathrm{H})\left(\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right)\right\}^{1-} ; 296.0 \quad\left\{(\mathrm{H})\left(\mathrm{H}_{2} \mathrm{O}\right)-\right.$ $\left.\left(\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right)\right\}^{1-} ; 352.4\left\{\left(\mathrm{Me}_{4} \mathrm{~N}\right)\left(\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OC}_{2} \mathrm{H}_{5}\right)\right\}^{1-}$. The compound was ion-exchanged to the sodium salt in $\mathrm{H}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}(1: 1)$ solution using BioRad AG50W-X8, 50-100 mesh cation exchange resin. ${ }^{1} \mathrm{H}$ NMR (ppm, $\left.\mathrm{CD}_{3} \mathrm{CN}\right): 3.15\left(\mathrm{q}, J_{\mathrm{HH}}=\mathrm{Hz}, \mathrm{B}-\mathrm{O}-\mathrm{CH}_{2}\right) ; 0.74\left(\mathrm{t}, J_{\mathrm{HH}}=7 \mathrm{~Hz},-\mathrm{CH}_{3}\right)$ ${ }^{13} \mathrm{C}$ NMR (ppm, $\left.\mathrm{D}_{2} \mathrm{O}\right): 76.01\left(\mathrm{~B}-\mathrm{O}-\mathrm{CH}_{2}\right), 13.98\left(-\mathrm{CH}_{3}\right)$
 (6) Li, F.; Kane, R. R.; Shelly, K.; Knobler, C. B.; Hawthorne, M. F Manuscript in preparation.
 (7) Spectroscopic data for 4. ${ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, $\mathrm{H}_{2} \mathrm{O}$): 11.1 (2B $\mathrm{B}-\mathrm{B}) ; 2.6(2 \mathrm{~B}$, apical $\mathrm{B}-\mathrm{H}) ;-4.4(2 \mathrm{~B}, \mathrm{~B}-\mathrm{O}-\mathrm{B}) ;-20.8,-21.9$, and -29.6 (total 14B, equatorial $\mathrm{B}-\mathrm{H}$). Electrospray MS (m / z): 125.2 $\left\{\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right\}^{2-} ; 324.4\left\{\left(\mathrm{Me}_{4} \mathrm{~N}\right)\left(\mathrm{B}_{20} \mathrm{H}_{17} \mathrm{OH}\right)\right\}^{1-}$.

[^1]: (8) $\left[\mathrm{Me}_{4} \mathrm{~N}\right]_{2}[4]$ crystallized in the orthorhombic space group $P b c 2_{1}$ (standard setting Pca2 ${ }_{1}$, No. 29) with $a=12.327(4) \AA, b=13.476(4) \AA$, $c=16.360(5) A, V=2718 \AA^{3}$, and $Z=4$. Data were collected on a Syntex P1 diffractometer modified by Professor C.E. Strouse of this department, using $\mathrm{Cu} \mathrm{K} \alpha$ radiation, to a maximum $2 \theta=115^{\circ}$, giving 1944 unique reflections, and the structure was solved by direct methods. The final discrepancy indices were $R=0.069, R_{\mathrm{w}}=0.086$, and GOF $=2.50$ for 1313 independent reflections with $I>3 \sigma(I)$.
 (9) Peymann, T.; Lork, E.; Gabel, D. Inorg. Chem. 1996, 35, 13551360 and references therein.

[^2]: (10) Watson-Clark, R.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1996, 35, 2963-2966.
 (11) Ng, L.; Ng, B. K.; Knobler, C. B.; Hawthorne, M. F. Inorg. Chem. 1992, 31, 3669 .

[^3]: (12) Aqueous solutions of $\mathbf{3}$ are essentially neutral and exhibit one weakly acidic proton, identifying the hydroxyl hydrogen of 4 as the strong acid.
 (13) The $\mathrm{p} K_{\mathrm{a}}$ of the hydroxyl hydrogen was estimated from the pH of the half-neutralization volume of an aqueous titration. The $\mathrm{p} K_{\mathrm{a}}$ of the bridging hydrogen was estimated from integration of ${ }^{11} \mathrm{~B}$ spectra at several pH values near the $\mathrm{p} K_{\mathrm{a}}$.
 (14) Spectroscopic data for $\left[\mu-\mathrm{B}_{20} \mathrm{H}_{16} \mathrm{O}\right]^{4-} .{ }^{11} \mathrm{~B}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (ppm, $\mathrm{H}_{2} \mathrm{O}$, $\mathrm{pH} \approx 13.5)$: $13.8(2 \mathrm{~B}, \mathrm{~B}-\mathrm{B}) ; 7.3(2 \mathrm{~B}, \mathrm{~B}-\mathrm{O}) ;-8.4(2 \mathrm{~B}$, apical $\mathrm{B}-\mathrm{H})$; $-22.6(8 \mathrm{~B}$, equatorial $\mathrm{B}-\mathrm{H}) ;-29.5(4 \mathrm{~B}$, equatorial $\mathrm{B}-\mathrm{H}) ;-34.8(2 \mathrm{~B}$, equatorial $\mathrm{B}-\mathrm{H}$).
 (15) Chamberland, B. L.; Muetterties, E. L. Inorg. Chem. 1964, 3, 14501456.

